Recovering Method of Missing Data Based on Proposed Modified Kalman Filter When Time Series of Mean Data is Known
نویسنده
چکیده
Recovering method of missing data based on the proposed modified Kalman filter for the case that the time series of mean data is know is proposed. There are some cases of which although a portion of data is missing, mean value of the time series of data is known. For instance, although coarse resolution of imagery data are acquired every day, fine resolution of imagery data are missing sometimes. In other words, coarse resolution of imaging sensor has wide swath width while fine resolution of imaging sensor has narrow swath, in general. Therefore, coarse resolution of sensor data can be acquired every day while fine resolution of sensor data can be acquired not so frequently. It would be nice to become able to create frequently acquired fine resolution of sensor data (every day) using the previously acquired fine resolution of sensor data together with the coarse resolution of sensor data. The proposed method allows creation of fine resolution sensor data with the aforementioned method based on a modified Kalman filter. As an example of the proposed method, prediction of missing ASTER/VNIR data based on Kalman filter using simultaneously acquired MODIS data as a mean value of time series data in revision of filter status is attempted together with a comparative study of prediction errors for both conventional Kalman filter and the proposed modified Kalman filter which utilizes mean value of time series data derived from the other sources. Experimental data shows that 4 to 111% of prediction error reduction can be achieved by the proposed modified Kalman filter in comparison to the conventional Kalman filter. It is found that the reduction rate depends on the mean value accuracy of time series data derived from the other data sources. The experimental results with remote sensing satellite imagery data show a validity of the proposed method Keywords—Kalman filter; nremote sensing satellite image; time series analysis
منابع مشابه
Improvement in Differential GPS Accuracy using Kalman Filter
Global Positioning System (GPS) is proven to be an accurate positioning sensor. However, there are several sources of errors such as ionosphere and troposphere effects, satellite time errors, errors of orbit data, receivers errors, and errors resulting from multi-path effect which reduce the accuracy of low-cost GPS receivers. These sources of errors also limit the use of single-frequency GPS r...
متن کاملIMPLEMENTATION OF EXTENDED KALMAN FILTER TO REDUCE NON CYCLO-STATIONARY NOISE IN AERIAL GAMMA RAY SURVEY
Gamma-ray detection has an important role in the enhancement the nuclear safety and provides a proper environment for applications of nuclear radiation. To reduce the risk of exposure, aerial gamma survey is commonly used as an advantage of the distance between the detection system and the radiation sources. One of the most important issues in aerial gamma survey is the detection noise. Various...
متن کاملTime Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter
In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملApplying mean shift and motion detection approaches to hand tracking in sign language
Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013